
ORNL is managed by UT-Battelle
for the US Department of Energy

Early Experiences in
using OpenMP 4 for
SPEC ACCEL

Presented by:

Oscar Hernandez (ORNL)

Kalyan Kumaran (ANL)

Arpith Jacob (IBM)

Alexander Bobyr (Intel)

Graham Lopez (ORNL)

David Bernholdt (ORNL)

Work done in collaboration with SPEC/HPG group.
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

2

SPEC HIGH PERFORMANCE GROUP (HPG)

• Develops benchmarks that represent high-
performance computing applications for
standardized, cross-platform performance evaluation.

• Current Benchmarks
–  SPEC OMP2012, SPEC MPI2007, SPEC ACCEL 1.0, 1.1

• Working toward OpenMP 4 SPEC ACCEL 1.2
–  Portable across architectures (host, GPUs, XeonPhi)
– Works with at least two compilers

• Active members:
–  NVIDIA*, SGI, Intel*, IBM*, AMD, Argonne*, ORNL*, HZDR,

Oracle, University of Delaware, University of Virginia,
RWTH Aachen University, University of Illinois, Indiana
University, TU Dresden

*Present at the DOE workshop

3

OpenMP 4.0 – Performance Portability
 (Meeting in Berlin)

• We had a meeting and discussed a strategy on how
to write “performance portable” style in OpenMP 4
–  Initially members had different views.
– We agreed on some “guidelines” on how to write portable

code
– We used these “guidelines” and successfully parallelized

the 16 benchmarks with OpenMP 4

4

SPEC ACCEL: OpenMP 4 Candidates*
* (SPEC/HPG – Confidential)

OpenACC Benchmarks Language Origin Domain

503.ostencil C Parboil, University of Illinois Thermodynamics

504.olbm C Parboil, University of Illinois CFDm Lattice Boltzmann

514.omriq C Rodinia, University of Virginia Medicine

550.md Fortran Indiana University Molecular Dyn.

551.palm Fortran Leibniz University of Hannover Large-eddy sim.

552.ep C NAS Parallel Benchmarks (NPB) Embarrassing P.

553.clvrleaf C, Fortran Atomic Weapons Establishments Hydrodynamics

554.cg C NPB Conjugate Grad.

555.seismic Fortran GeoDynamics.org Seismic Wave Modeling
(PDE)

556.sp Fortran NPB Scalar Peta-d solv

557.csp C NPB Scalar Peta-d solv

559.miniGhost C, Fortran Sandia National Laboratory Finite difference

560.ilbdc Fortran SPEC OMP2012 Fluid Mechanics

563.swim Fortran SPEC OMP2012 Weather

570.bt C NPB BTS 3D PDE

5

Guidelines – To write OpenMP 4
“Performance Portable Style”

• Use OpenMP 4 “Accelerator Model”
• Do not specify:

–  # of teams
–  # thread_limit,
–  # of threads – in parallel regions
–  SIMD length
–  dist_schedule – in distribute
–  loop schedules – in parallel do

• Compiler implementers should pick these values to
enable performance portability

6

Guidelines – To write OpenMP 4
“Performance Portable Style”

• For level-1 loopnest
•  #pragma target teams distribute parallel for simd

• For perfectly nested loops
–  Use the following nesting of parallelism

#pragma omp target teams distribute parallel for collapse(N)
for(i=0;….)
 for(j=0;….)
#pragma omp simd

 for(k=0;…)

• Parallelize the inner loops always with SIMD
• Do not collapse inner loops

7

Guidelines for OpenMP 4
• Reductions

–  Reduction variables need to be mapped to/from
#pragma omp target map(tofrom:sum)
#pragma omp teams distribute parallel for reduction(+:sum)

 for(….)
 sum = sum + ….

• Privatization
– We should only privatize only at a nesting level

#pragma omp teams distribute parallel for // private(yy, zz)
for(i= ….)
 for(j= …)
#pragma omp simd private(yy,zz)
 for(z= …
 yy =
 zz =

8

Guidelines for OpenMP 4
• Don’t merge target regions if they have

dependences across loopnests (otherwise do)
#pragma omp target teams distribute parallel for

for(i=…)
 a[i] =

#pragma omp target teams distribute parallel for
for(i=…)
 b[i] =

•  To:
#pragma omp target teams
#pragma omp distribute

 for(i=…)

 a[i] =
#pragma omp distribute

 for(i=…)
 b[i] =

9

Example – jacobi.f – Portable OpenMP

!$omp target map(tofrom: error)

!$omp teams distribute parallel do reduction(+:error)

 do j = 2,m-1

!$omp simd private(resid)

 do i = 2,n-1

 resid = [computes resid from I,j-arrays]

* error = error + resid*resid

 end do

 enddo

!$omp end teams distribute parallel do

!$omp end target

10

Preliminary results are showing

•  If you want performance portability in your codes
across platforms:
–  USE OPENMP 4.0 “Accelerator Model”
–  This includes:

•  GPUs
•  Xeon Phi (self-hosted)
•  CPUs

• Compilers should tune and pick code for a given
architecture – unless you want to auto-tune.

• Compilers are still working on their OpenMP
implementations and few support multiple
architectures for OpenMP 4.0 accelerator model

